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ABSTRACT

Undesirable steady offsets result when a stationary, linear

regulator using state feedback is subjected to constant disturbances

and/or non-zero setpoints. To eliminate these offsets, the distur-

bances and non-zero setpoints can be fed forward to the control. Only

when the number of outputs is less than or equal to the number of

control inputs can the outputs be maintained at arbitrary non-zero set-

points.

The constant disturbances may be estimated from the state using

an observer. An alternative is to feed back integrals of the devia-

tion in the outputs; this amounts to a special form of disturbance

observer and has the advantage that the steady performance is insensi-

tive to small deviations in the system model parameters.

The state and the disturbance may be estimated using a constant

gain Kalman filter. In this case we suggest that the constant distur-

bances be modeled as exponentially correlated processes with long

correlation times. As an alternative, a Kalman filter (neglecting

disturbances) can be used to estimate the state and the estimated state

and integrals of the measured output deviation are then fed back to

the control.

These results are applied to the problem of automatic landing of

an aircraft in the presence of a steady crosswind. The goal of the

control system is to maintain the lateral position and yaw attitude

of the aircraft in alignment with the runway centerline.
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NOMENCLATURE

For the context of general results:

A Symmetric, positive semi-definite weighting matrix on the
states for quadratic synthesis

B Symmetric, positive definite weighting matrix on the controls

C Matrix of control gains. Subscripts refer to associated'
vector, e.g. Cx, Cy , etc.

F State dynamics matrix

G Control distribution matrix

H Measurement distribution matrix

J Performance index for an optimization problem

K Matrix of filter or observer gains

L A special matrix useful in integral control synthesis

M Matrix for feed-forward control

P Steady estimation error covariance matrix

Q Power spectral density of process noise

R Power spectral density of measurement noise

S Solution matrix of the Ricatti equation for quadratic synthesis

$ Diagonal matrix of eigenvalues of Euler-Lagrange system in
quadratic synthesis. Subscript refers to sign of the real
part.

t Independent variable usually time or distance

T Output distribution matrix

u Control vector

v Vector of integral control variables

w Constant disturbance vector

x State vector

X Partition of the Euler-Lagrange eigenvector matrix corresponding
to the state

y Output vector

z Measurement vector

r Disturbance distribution matrix

77 Impulse or white noise process disturbance vector

X,4 Lagrange multiplier vectors

vi



A Partition of the Euler-Lagrange eigenvector matrix corresponding

to the adjoint variables

V Measurement noise vector

X Covariance matrix. Subscripts refer to associated vectors,

e.g. Xx u = E(xuT)

(') Differentiation with respect to the independent variable

E( ) Expectation operator (mean value)

(^) Estimate of a vector

(~) Error associated with the estimate of a vector, e.g. x=x-x

A
= Defined equal to

-l
( )- Inverse of a matrix

( )T Transpose of a matrix (or column vector)

( )d Desired value of a vector

( ) Steady value of a vector

For the context of specific results for the lateral motions of a DC-8

aircraft in landing approach:

V Reference airspeed of the aircraft (hft/sec , 1 hft = 100 ft)

w Steady crosswind (ft/sec)

x Independent variable = horizontal range (hft)

y Lateral position (ft)

6a Aileron (spoiler) deflection (deg)

6r Rudder deflection (deg)

( Horizontal path azimuth angle (deg)

SRoll angle (deg)

cP' Roll angle derivative (deg/hft)

Yaw angle (deg)

f' Yaw angle derivative (deg/hft)

W Turn rate (deg/sec)
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Chapter 1

Introduction

The purpose of a regulator is to hold certain outputs of a system

near desired set point values in the presence of disturbances. Two

types of disturbance commonly encountered are (1) impulse (initial

condition) disturbances and (2) constant (step) disturbances. To

counteract impulse disturbances, feedback regulators are used; they

are designed by time domain, frequency response, and state variable

quadratic synthesis techniques (B-2).

Constant disturbances arise from external influences on the system

or from non-zero set points for the outputs. The effect.of constant

disturbances on systems with regulators designed for impulse disturbances

is to drive them through a transient to some steady offset. Compensation

for this offset is often possible by feeding the set points and external

constant disturbances forward to the control. Di Caprio and Wang, 1969

(D-3), Belanger, 1970 (B-l), Kwakernaak and Sivan, 1972 (K-2), and

Power, 1973 (P-5) suggest breaking the non-zero set-point problem into

two parts: (1) the determination of desired steady values of state and

control which depend explicitly on the set points, and (2) the design of

a regulator to control the deviations from the steady values. The similar

problem of constant process disturbances is discussed in the scalar case

by Athans, 1971 (A-2), and in the vector case by Johnson, 1971 (J-2).

However, both of these treatments attempt to bring all of the state

components to zero in the steady-state, which is usually not possible

or desirable. In addition, the steady-state solution for zero output

offset, when it exists, is often not unique. A static optimization

procedure presented herein removes this ambiguity.

If the constant disturbances are not measured directly, they may

still be estimated (or otherwise accounted for) using only the available

measurements.

For single-input, single-output systems, a well-known compensation

technique for constant disturbances is the addition of integral control

1



(C-1 and D-l). This consists of feeding back the first integral of the

deviation in the desired output. Through the application of frequency

or time domain analysis, the integral control gain is adjusted for a

suitable transient behavior. For a stable system, such integral feed-

back causes the output being integrated to be driven to a zero steady

offset.

In the case of multi-input, multi-output systems, an observer (L-2

and B-3) can often be designed to estimate the disturbance. The estimate

is then fed to the control input. Johnson, 1971 (J-2) suggests this

approach, although his formulation is somewhat different from the

approach presented herein.

The concept of integral control and its zero-offset properties can

be extended to multi-variable systems. Johnson, 1968 (J-1), Latour,

1971 (L-1), Athans, 1971 (A-2), and Anderson and Moore, 1971 (A-l)

suggest modifying the performance index of the linear regulator, qua-

dratic synthesis technique to include weighting on the derivative of the

control input. After algebraic manipulation, the resulting control law

is found to include integration of linear combinations of the state

variables. One problem with this approach is that these combinations

of state variables do not generally correspond to the desired outputs.

Hence, the outputs will be driven to some offset unless the control can

directly cancel the effect of the constant disturbance. This latter

condition is overly restrictive. Porter, 1971 (P-l), Bryson, 1972 (B-5),

and Kwakernaak and Sivan, 1972 (K-2) suggest the more fruitful approach

of adding to the performance index weights on the additional states

formed by integration of the outputs. Meyer, Martin, and Power, 1973

(M-l) present an interesting alternative formulation by weighting the

output deviation and state derivative in the performance index. Some

caution must be taken, however, since adding additional states may

make a previously controllable system uncontrollable. Power and Porter,

1970 (P-3) give the requisite controllability conditions for the case of

additional integrated states. These conditions are found to be related

to the ability to find some control that will yield zero offset. A
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technique is presented herein which allows the use of the set-point

gains for zero offset to augment a stable state feedback regulator with

integrals of the output. The closed-loop poles of the overall system

are those of the original regulator plus additional poles, corresponding

to the integrations, with an arbitrary degree of stability. This

technique requires very little additional computation and facilitates

on-line switching from proportional to proportional-integral control

modes. While preparing this report, reference was found to a similar

pole assignment technique (P-4). The relation between the integral

control and observer formulations is also explored. Davison and Smith,

1971 (D-2) show that feedback of the state plus integrals of the output

constitutes a minimal order realization of a system, operating on the

state, for which the overall closed-loop poles can be assigned arbitarily

and the steady output is zero. It is further shown here that integral

control amounts to a special form of observer.

In many cases, the full state is not known exactly. Instead, only

certain noisy measurements are available. When an optimal filter (K-l,

B-2) is used to estimate the state and constant disturbances, it is

found that the asymptotic estimates of the constant disturbances are

exact. Thus, the steady filter will have zero gains and cannot be used.

To circumvent this problem, an observer design technique can be used.

Kwatny, 1972 (K-3) found that by modeling the disturbance as a random

walk process (integral of a white-noise process), such observers can

effectively be designed. Alternatively, a filter which estimates the

state alone (ignoring the constant disturbance) can be used in conjunc-

tion with an integral control law, providing the desired outputs are

directly measured. This latter technique has the advantage that the

stationary output covariance does not depend upon the nature of the

constant disturbance.

Each of the above topics is discussed in detail in the remaining

sections, and the results are applied to the problem of designing a

lateral autopilot for automatic aircraft landing in the presence of a

steady crosswind.
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Chapter 2

Review of Regulator Design for Impulse Disturbances

with Exact Knowledge of the State

2.1 - System Model

The systems considered here can be represented by a set of constant

coefficient linear differential equations

x = Fx + Gu + TI (2.1.1)

where x = state vector

u = control (input) vector

77 = disturbance vector

F = state dynamics matrix

G = control distribution matrix

r = disturbance distribution matrix

(') denotes derivative with respect to the

independent variable (usually time or distance)

The objective of regulator design is to keep the state, x, near

zero in the presence of disturbances, 7. Here we assume that (a) the

disturbances are non-zero over periods of time short compared to

response times of the system (impulse type disturbances), (b) the time

average of the disturbances is zero (positive impulses are balanced by

negative impulses), and (c) otherwise, the disturbances are unpredict-

able. Since the disturbances are unpredictable except for the zero

average, the best thing to do is to assume 77=0 in the future and

design the regulator to bring the state to zero from arbitrary initial

conditions in an acceptably short period of time. Two techniques for

designing such a control law are presented in the following sections.

2.2 - Pole Assignment (B-3)

For the linear system given by equation (2.1.1), let the control

law be defined

u = -Cx (2.2.1)

4



Thus, the closed-loop system will be given by

x = (F-GC)x , x(t ) = x (2.2.2)
o o

The transient response will be determined by the eigenvalues

(closed-loop poles) of the (F-GC) matrix. Stability is assured if all

the eigenvalues have negative real parts. The dominant transient

characteristics will be determined by the poles with the smallest

magnitudes. If the system [F:G] is controllable, the eigenvalues can be

arbitrarily assigned (complex values occurring in conjugate pairs)

through the choice of C. To see this, consider the characteristic

equation given by

IsI - F + GCJ = 0 (2.2.3)

This determinant is a polynomial in the variable s and hence will have

coefficients which are functions of the various elements of F, G, and

C. Selection of the poles (roots of 2.2.3) prescribes these coefficients.

Equating the coefficients yields algebraic (generally non-linear) equa-

tions to be satisfied by the components of C. In the case of a single

input system there are exactly enough components of C so the solution

will be unique. However, for multi-input systems the solution for C

is generally non-unique, leading to one of the difficulties with the

method.

Care must also be taken when assigning the magnitude of the eigen-

values. Generally, if the magnitude of the closed-loop eigenvalues

greatly exceeds the magnitude of the open-loop eigenvalues, large compo-

nents of the control gain matrix (C) will be required. Large gains may

lead to control saturation and noise amplification problems.

2.3 - Quadratic Synthesis (B-2)

Consider the following optimal regulator problem. We want to

minimize with respect to control (u) the performance index

ca

J = 1/2 (xTAx+u TBu)dt (2.3.1)

t
0
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subject to the differential equation constraint

* = Fx + Gu

The matrices A and B are chosen subjectively to weigh the output devia-

tion against control magnitude. The solution is the linear feedback law

u = -Cx (2.3.2)

where C = B-1G S , SF + F S + A - SGB -GTs = 0 . (2.3.3)

The solution of this non-linear Ricatti equation for the

matrix (S) can be obtained efficiently by eigenvalue decomposition of

the Euler-Language system (B-6).

F ,-GB-1G XX X X X 0

L : ]::] K ] ](2.3.4)
The matrix (S) is given in terms of the partitioned eigenvectors as

S = A - 1  (2.3.5)

2.4 - Example: A Lateral Aircraft Autopilot

Consider the design of an autopilot to align an aircraft with the

runway in the final phase of the approach and landing. The lateral

motions of an aircraft are well-approximated by a sixth order linear

model (Appendices A&B). The model states are roll attitude (cP) and

derivative (0P') yaw attitude (J) and derivative (?'I), horizontal path

angle (C), and lateral position (y) (See Fig. 1). The controls are the

aileron (6a) and rudder (6r) deflections. The equations are written in

terms of the horizontal range (x) as the independent variable, and the

F,G matrices for a DC-8 aircraft in landing approach are given in

Appendix B.

Applying the quadratic synthesis technique described in the previous

section, a performance index is chosen which weighs deviations in yaw

attitude and lateral position against the control deflections.
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Definition of Lateral Aircraft States

VELOCITY w.r.t. GROUND

VELOCITY

GROUND DATUM + 8 r
+ r

HORIZONTAL

B = sideslip w.r.t. the air (gives
the aerodynamic forces)

Pw = non-dimensional side wind (w/V)

cP = roll attitude

= yaw attitude

( = flight path azimuth angle (/V)

y = lateral position

x = range

ba = aileron-spoiler deflection

6r = rudder deflection

FIG. 1
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J = 1/2 S (y/al 2 + (/a2 2 + (6a/b1 2 + (6r/b2 2 dx

o (2.4.1)

Choosing the weighting factors:

al = 15 ft, a2 = 2 deg, b 1 = 10 deg, and b2 = 10 deg

yields the feedback control law (see Appendix B):

6a = -3.571p' - 2.47kp - 4.630' - 1.602 - 8.546C - 0.6592y
(2.4.2)

6r = -0.2328r' - 0.4959p - 9.187k' - 3.6274r - 2.917( - 0.0996y

where: 6 a, 6 r, , k, C are taken in units of deg.

y is taken in units of ft.

P', ?P' are taken in units of deg/hft*.

Using this control law, the closed-loop poles are shown in Fig. 2.

The lateral position and yaw attitude are taken as zero when the air-

craft is aligned with the extended runway centerline. The transient

response to initial conditions of (p=5 deg, ?P=5 deg, and y=15 ft

is shown in Fig. 3.

lhft = 100 ft

8



Open and Closed Loop Poles for

State Feedback Lateral Control System

- Open

- Closed Units: hft-1

1.0

x -0.5
-.0oI .01

x

1.0 -0.5 0.5

f-1.0

FIG. 2
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Response to Initial Condition Disturbance

Using State Feedback Control

LATERAL POSITION (y)
20

15

zw
I 10 4

5  2

YA( (,lOsec).. RANGE (ft)

S 00/ 1000 1500!000 250 000
w

-2-

-4-

FIG. 3
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Chapter 3

Regulator Design for Constant Disturbances and Non-Zero Set Points

with Exact Knowledge of the State

3.1 - The Effect of Uncompensated Constant Disturbances

Consider the linear system model of Chapter 2 with the addition of

a constant disturbance vector and a specified output vector:

S= Fx + Gu + rw , y = Tx, (3.1.1)

where w = constant disturbance vector,

r = constant disturbance distribution matrix,

y = output vector,

T = output distribution matrix.

The control objective is to bring and hold the outputs .(y) to the set

points (yd).

To illustrate the effect of a constant disturbance which is not

compensated for, again consider the lateral aircraft control example.

Using the feedback control law given before, the effect of a steady

crosswind is shown in Fig. 4. The initial conditions are taken as zero,

which means that the aircraft, initially in trim, suddenly encounters a

crosswind which is then constant. The crosswind speed is taken as 25 ft/

sec (, 15 kts). Note that the lateral position (y), the yaw attitude

(4), and roll attitude (c) all go to appreciable steady offsets.

3.2 - Design with Exact Knowledge of the Disturbances

As a first step in the development, suppose that the disturbances

(w) are known exactly. A reasonable control law would then be to feed-

back the deviations in the state from a desired steady value (D-3, K-2,

P-5). Thus,

u = u - C (x-* ) (3.2.1)s x s

The desired steady values us and xs are chosen to satisfy the steady-

state and zero-offset constraints and thus depend upon the set point and

disturbances.

11



Response to Step Crosswind Using State Feedback Only

20

15
LATERAL POSITION (y)

210 4-

S5 2-

"DOLL ()(lOsec) (ulOsec). RANGE (ft)

500 1000 15ooo 00 2000 2500

-2 -

YAW ()

-4 -

FIG. 4



Fx + Gu + rw = o (3.2.2)
s s

Tx - Yd = 0 (3.2.3)

When the control law (3.2.1) is used in the system equations (3.1.1),

the result is

k = Fx + G[u -C (x-x )] + 1 (3.2.4)
s x s

or (x-x ) F(x-x ) + G(u-u ) + Fx + Gu + rw
dt s s s s s

= F(x-x ) + G(u-u ) (3.2.5)
s s

Thus, the problem of choosing the gain Cx is exactly that of the

regulator problem for impulse disturbances of Chapter 2, where the

deviations from steady values are used as state and control. The

remaining problem is then the choice of appropriate steady values

x and u
s s

The linear equations(3.2.2)and(3.2.3)have a solution if the rank

of the matrix rF,G1 is equal to the rank of the column-augmented

matrix ,

F , G rw

T , O , Y d

For arbitrary non-zero w and yd this requires that the number of

outputs be less than or equal to the number of controls, and that

the rank of [F,G] be equal to the number of rows.

When the number of outputs equals the number of controls the

solution is unique.

y= (3.2.6)

u Ms uw uy d

13



-1

where Mx (3.2.7)

=~ (3.2.7)

When the number of outputs is less than the number of controls, and

the matrix FF,GI has full rank, an infinite number of solutions exist.

LT,OJ
A useful technique for specifying a solution is to minimize the performance

index

J = 1/2(x Ax +u TBu ) (3.2.8)

subject to the steady-state and zero-offset constraints (3.2.2) and

(3.2.3). This yields unique solutions of the same form as (3.2.6).

Determination of the gain matrices in (3.2.6) for this case is discussed

in Appendix C.

Using (3.2.6) we may rewrite (3.2.1) in the form

u = -C x + C yYd - C w , (3.2.9)

where C = M + CM , C = (M +C M ) .
y uy x xy w uw x xw

For the lateral aircraft control problem, there are two outputs,

yaw attitude and lateral position, and two controls, rudder and aileron

deflection. The choice of outputs was made among the three possibilities

of lateral position, yaw attitude, and roll attitude. Obviously, the

lateral position is of primary importance for an automatic landing.

Deviations in roll atttitude will cause touchdown on one landing gear,

while deviations in yaw attitude result in side skidding. The side

skidding is deemed the more dangerous situation.

Applying the previous results then yields the additional gains for

non-zero set points and the steady crosswind. The control law becomes

14



6a = -3.571p' - 2.471 - 4.630*' - 1.602f - 0.8431d - 8.546E

- 0.65 9 2(y-y d ) - 0.5732w
(3.2.10)

6r = -0.2328p' - 0.4 9 59P - 9.1874' - 3.622 + 5.52*d - 2.917(

- 0.0 9 96(y-yd ) + 0.4461w

where all quantities are as before except w which is the steady

crosswind in units of ft/sec.

The transient response to zero initial conditions is shown in

Fig. 5 for yd= d=O . Note that both the lateral position and yaw

attitude deviations go to zero in the steady state, while roll attitude

maintains some offset. This offset is given as

Ps (-0.108 deg-sec/ft)w (3.2.11)

3.3 - Design Using Estimates of the Disturbances

The compensation method just described assumes perfect knowledge

of the disturbances. If the disturbances cannot be measured directly

it may still be possible to estimate them. One method of doing this is

to synthesize a reduced order observer to estimate the disturbances

(L-2, J-2).

Since the state is assumed to be known exactly, its derivative,

in principle, is also known exactly. Thus, let an estimate of w be

defined as:

w = K[(Fx+Gu+rw) - 1 , ^(t) = 0 (3.3.1)

where K is a constant matrix to be chosen. The estimate error,
A^

w= - w, is then given by

w = KK (3.3.2)

If the matrix K is chosen so that Kr is negative definite, the

estimate error (W) will go to zero asymptotically, i.e. w - w

The control used is the obvious modification of (3.2.9):

u = -C x + C yy - C w (3.3.3)

15



controlled Response to Step Crosswind

Using Exact Knowledge of State and Wind

10 4-
LATERAL POSITION (y)

S5 2-

YAN() RANGE (ft)
0 0 500 1000 1500 2000-2500

-4

ROLL ()

-6 -

FIG. 5



Since w = w+w , and w does not depend on x (Eq. 3.3.2) the

eigenvalues of the controlled system are the eigenvalues of

F-GC and of K .
x

To avoid differentiating the state in (3.3.1), define

w. = w + Kx ; then

* = K(FxGu+r),
(3.3.4)

w = w - Kx

The deficiency of this method of compensation is that it depends

upon precise knowledge of the system model. If the actual F, G,

and r matrices differ from the estimated ones, a non-zero steady

offset results.

As an example, consider again the lateral aircraft control problem

where the disturbance is the steady crosswind. Let the observer gains

(K) be chosen so that K=-U(rT)-lrT . Thus, the observer characteristic

matrix (I) becomes the scalar

I = -0 (3.3.5)

and the observer pole is given by - . In this case, C was chosen
-l

as 0.3 hft -1 , which lies near the middle of the closed-loop regulator

poles (see Fig. 2). The response to a 25 ft/sec crosswind is shown in

Fig. 6. The steady values of lateral position (y) and yaw attitude (i)

are still zero, but the transient is somewhat more pronounced than in

the case of exact disturbance feedback. This is due to the lag in

estimating the steady crosswind.

3.4 - Design Using Estimates of the Output Deviations Produced

by Uncompensated Constant Disturbances (Integral Control)

An alternative to estimating the disturbances is to estimate the

steady output deviations that would be produced by constant distur-

bances if the system were not compensated. As we shall show, this leads

directly to a generalization of classical integral control.
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Let

u = -Cx + Cy (3.4.1)

Steady-state solutions, if any exist,must satisfy

0 = (F-GC )x + GC y + rw,
x s yo (3.4.2)

Y = Txs

If the system is controllable, F-GC is negative-definite, so
x

x = -(F-GC )-(GC y Y+Fw) (3.4.3)

Substituting (3.4.3) into the second set of equations in (3.4.2) gives

d - Lw = LGC yo (3.4.4)

where L -T(F-GC )-1
x

Equation (3.4.4) is satisfied for all yd and w if

LGC = I ,
Y (3.4.5)

Yo = Yd - Lrw

Gains C can be found to satisfy (3.4.5) provided the number of outputs
y

is less than or equal to the number of controls (and LG of full rank).

An estimate of y = Lw can be obtained from

Y = KL(i-Fx-Gu-r ) (3.4.6)

= -K(y -yw ) (3.4.7)

Since w=0 , it follows from (3.4.7) that

W = -KY where w Y - y . (3.4.8)w w W w W

Thus if K is chosen to be positive-definite Yw 0 . Substituting

(3.4.1) into (3.4.6) yields

Yw = KLk - KL[(F-GCx)x + GCyy - GCw + r~ (3.4.9)
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Using (3.4.5) and L(F-GC ) = -T , Eqn. (3.4.9) becomes
x

= KLk - K(-Tx+yd) (3.4.10)

To avoid differentiating x , define y ^ - KLx ; then

9 = K(Tx-yd)  , y (t = -KLx(t '

w = Y* + KLx , (3.4.11)

where u = -C x + C (y -yw )x y d w

Now (3.4.11) is obviously a generalization of "integral control" from the

single-input, single-output case to the multi-input, multi-output case.

In steady-state, k@=0= Tx - yd , even if F, G, r were not estimated

precisely.

Since (3.4.8) does not depend on x , it follows that the closed-

loop eigenvalues of the system using (3.4.11) are the eigenvalues of

F-GCx plus the eigenvalues of -K , which are determined separately.

A slightly more familiar form of integral control is obtained from

(3.4.11) by introducing a vector v such that

y = Kv (3.4.12)

Then (3.4.11) may be written as:

= Tx - yd v(t ) = -Lx(t ) ,
(3.4.13)

u = -(Cx+CyKL)x + Cyd - CyKv ,

where LGC = I
y

The eigenvalues of the closed-loop system are still the eigenvalues of

F-GCx and of -K . The estimated steady output deviations that would

be produced by constant disturbances if the system were not

compensated are

yw = K(v+Lx) . (3.4.14)
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If integral feedback is added to a system already designed with

state feedback without modifying the state feedback gains (note C
x

is modified to C +C KL in (3.4.13)), the transient behavior of the
x y

resulting closed-loop system is usually degraded (occasionally the

system is even made unstable). Obviously, it is possible to design the

state feedback gains simultaneously with the selection of the integral

feedback gains so that the transient behavior is acceptable. This can

be done, for example, by quadratic synthesis (see Appendix D).

A satisfactory state-plus-integral control system can always be

found provided:

(a) The system (F,G) is controllable.

(b) The number of outputs is less than or equal to the

number of control inputs.

(c) The matrix [F,G has full rank, or, equivalently,
LT,0]

the matrix LG has rank equal to the number of

outputs.

The major advantage of integral control is its relative insensi-

tivity to errors in the system model. If the actual F, G, and r

matrices differ from those used in the design, the transient behavior

and the steady-state values of x and u are affected. However,

unless the system is actually destabilized, the steady-output offset

will still be zero.

Again, consider the lateral aircraft control example. Since it is

desired to drive both the outputs, lateral position (y) and yaw attitude

(?), to zero offset, the feed forward gains will be given by (3.4.5) as:

y L .100 , 5.52

Thus, for K = r'0 and y = 0.3 hft -  the additional integral

control poles will be located at the same place as the observer pole of

Section 3.3. The resulting feedback control law is
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6a = -5.796(' - 4.567p - 7.7037' - 2.768* - 22.21C - 2 .547y - 0.8 4 3*d

+ 0 . 6 5 9 yd - 0.1978 S(y-yd)dx - 0.2502 (*- d)dx

6r = 0.1203(p'- 0.6733p - 14.01*' - 6.995* - 5.658( - 0.2750y

+ 5.52 d + 0.100yd - .0298 S(y-yd)dx - 1.657 S (-*ddx

(3.4.16)

The transient response to a 25 ft/sec steady crosswind from zero initial

conditions with *d=Yd=0 is shown in Fig. 7. The steady offset for

lateral position (y) and yaw attitude (*) is again zero, and the tran-

sient response is almost identical to that of the first order reduced

observer of Section 3.3 where the disturbance itself was estimated.
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Chapter 4

Review of Regulator Design for White Noise Disturbances Using

Estimates of the State

4.1 - System Model

It is exceptional to be able to measure all of the state variables

accurately enough that they may be considered to be known exactly. A

more usual situation is that (a) only one or more functions of the state

variables are measured, (b) these measurements contain random errors,

(c) the process is driven by random disturbances. In this case the

system no longer has a steady equilibrium state as assumed in Chapters

2 and 3. However, it may have a "statistical steady state" with a

stationary probability density for the state and control variables.

If the process and the measurements can be modeled adequately as

Gauss-Markov processes, the probability densities are completely speci-

fied by mean values and covariance matrices of the state and control

variables.

We shall assume a stationary, linear model of the form

x = Fx + Gu + (4.1.1)

z = Hx + V (4.1.2)

where z = measurement vector,

H = measurement distribution matrix,

7 = process disturbance vector,

V = measurement error vector.

We shall also assume that 77 and V are independent purely random

processes (white noise) with

E[77(t)] = 0 ,

E[7(t)?7T.()] = Q 6(t-) ,

E[V(t)] = 0 ,(4.1.3)
(4.1.3)

E[V(t)vT(7)] = R 6(t-) ,

E[17(t)T(T)] = 0 ,
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where Q = process noise spectral density,

R = measurement noise spectral density.

4.2 - Observer-Controller by Pole Assignment

If the process and measurement noise are considered negligibly

small (i.e. Q0O , REO ), it is possible to "reconstruct" the state

using an "observer" (L-2), of the form

x = Fx + Gu + K(z-Hx) (4.2.1)

where x = estimate of x . If the state x is observable with the

measurements z , a gain matrix K can be found to assign the eigen-

values (poles) of the estimate error system arbitrarily, where

= (F-KH)R , (4.2.2)

and x = x - x = estimate error.

This estimate, x, can then be used with the controller feedback

gains, C , discussed in Section 2.2:

u = -C (4.2.3)

The eigenvalues of the closed-loop observer-controller are the eigen-

values of F-GC (the controller eigenvalues) plus the eigenvalues of

F-KH (the observer poles).

4.3 - Filter-Controller by Quadratic Synthesis

A useful technique for the design of control systems with additive

white noise in the measurements and the process is quadratic synthesis

coupled with optimal filtering. The system is modeled as a vector

Gauss-Markov process (Eqns. (4.1.1)-(4.1.3), and the performance index

is the expected value, given the measurement, of an integral quadratic

penalty function:

MinJ =S E((xT Ax+uTBu)z dt (4.3.1)

t
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The minimizing solution has been shown (P-2) to be the optimal

deterministic controller using the maximum likelihood estimates

(Kalman filter, K-l) of the system states. Thus, u=-C^ and

x = F^+Gu+K(z-HI)

where C = B-1G S ; SF+F S+A-SGB -1G S = 0 (4.3.2)

T -1 T T T 1
and K = PH R ; FP+PF +r T -PH R HP = 0

The steady covariance matrix of the state variables is given by

a T
X = E(xx X + P

(4.3.3)

where (F-GC)R + x(F-GC) T + KRK =0

P is the steady covariance matrix of the error in the estimates (2)

which is uncorrelated with the estimate (x).

The covariance matrix X is the stochastic analog of the deter-

ministic steady response. The steady output covariance is a measure of

how accurately the system is being controlled on the average. In fact,

the performance index is a weighted covariance trade off between the

state (or output) and the control.

4.4 - Example: Lateral Aircraft Autopilot

Consider again the lateral aircraft control problem, Suppose that

instead of perfect knowledge of the state, three noisy measurements of

roll attitude, yaw attitude, and lateral position are available. In

addition, suppose the system is disturbed by gusty winds. The wind gust

effects will be modeled as two independent Gaussian white noise

processes: the first is due to lateral gusts, and the second is due to

the lateral gradient of the vertical gusts. The power spectral densi-

ties of the process and measurement noise and the RMS values corre-

sponding to a 50 ft correlation length along the flight path are given

in Table 4.1.
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Table 4.1

Noise Component RMS PSD

Lateral gusts 10 ft/sec 10000 ft3/sec 2

Vertical gust gradient 10 ft/sec per 100 ft 1.0 ft/sec2

Roll attitude error 0.5 deg 25.0 ft-deg2
2

Yaw attitude error 0.5 deg 25.0 ft-deg

Lateral position error 10 ft 10000 ft3

Use of the eigenvalue decomposition technique to solve for the

steady filter and controller, yields the filter gains given in Appendix

E. The closed-loop poles (in units of hft- ) for the estimate error

equation are shown in Fig. 8. The RMS estimation error and the RMS

state response are shown in Table 4.2.

Table 4.2

' ' y 6a 6r

deg/hft deg deg/hft deg deg ft deg deg

RMS Error 0.872 0.651 0.366 0.472 0.169 3.09

RMS Response 1.47 3.31 0.500 0.979 0.651 7.43 6.30 3.17

The two poles near the origin correspond to the estimation of the

lateral position by combining the attitude and position measurements.

The relatively large time constant reflects the heavy filtering of the

noise in the lateral position measurement. Also, the RMS roll response

is considerably larger than the RMS yaw or path response. This is due

to the use of banked turns as the primary controlling influence on the

lateral position.
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The RMS response in Table 4.2 can be compared to the RMS response

shown in Table 4.3 where exact knowledge of the state is assumed.

Table 4.3

9P'  ( 00 C y 8a 6r

deg/hft deg deg/hft deg deg ft deg deg

RMS Response 1.022 2.11 0.309 0.536 0.407 4.07 5.07 2.92
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Chapter 5

Regulator Design for Constant Disturbances and Non-Zero Set

Points Using Estimates of the State

5.1 - The Effect of Uncompensated Constant Disturbances

Consider the Gauss-Markov system model of Chapter 4 with the

addition of a known constant disturbance vector, w:

k = Fx + Gu +r w + rl

z = Hx + V , (5.1.1)

*=0 .

If the filter-controller of Section 4.3 is used for the system, a

statistical steady state will still be reached but it will have a non-

zero mean value:

E ]- (F-KH)- 0 ,w

E[x] J (F-GC)- GC (F-KH)-l-I]r w, (5.1.2)

E[u - -C[(Ex] + E[R])

Suppose that the aircraft with the filter-controller of Section 4.4

is subjected to a 25 ft/sec steady crosswind. Since there is no direct

compensation for a steady crosswind, it will go to steady offsets of

-0.693 deg in roll, -4.38 deg in yaw, and 24.1 ft in lateral position.

Such large offsets in yaw attitude and lateral position are unacceptable.

5.2 - Design with Exact Knowledge of the Disturbances

If the disturbances,.w, are known exactly, this knowledge can be

used in the filter for estimating the state and in the feed forward to

the controls, i.e.

u = -C x + C y -C w , (5.2.1)

where

x, = FR + Gu +r w + K(z-r) . (5.2.2)

The feedback gains Cx and K are determined as in Chapters 2 and 4,
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as though yd=O , w=O ; the feed forward gains Cy and Cw are

determined as in Section 3.2. This system eliminates the mean value

offset described in Section 5.1.

5.3 - Design Using Estimates of the Disturbances

The constant disturbances are seldom known accurately so they must

usually be estimated along with the state variables from the available

measurements. However, the straightforward approach has a pitfall; by

straightforward approach, we mean optimal estimation considering the

disturbances as additional state variables with the random bias model,

w=0,

tw(t)]= 0 , Ew(t )w T (t)] = Xww, (5.3.1)

i.e. the disturbances are constant, unpredictable, and vary from sample

to sample. (In Section 5.1, the disturbances were assumed constant,

known, and the same for all samples.) The controller with the augmented

filter becomes

u = -Cx + CyYd - C w

x = F + Gu +r o + K (z-H) , (5.3.2)

w = K2 (z-H )

T -1 T T-1
where K = P HR K2 = P 2 H R

1 11 2  12

0 = FP +P F +rr -Pl HTR- lHPl+roP,+P
11 11 1 1 11 11 o12 12 0

(5.3.3)
T -l0 = FP +rP -P HR HP ,

12 o 22 11 12

0 = P2 H R HP2

However, (5.3.3) indicates that K2=0 since both P12 and P22=0 .

This occurs because the constant disturbances, w, can be estimated

exactly by a time-varying Kalman filter. The K2=O steady filter is

useless for estimating the disturbances. Two alternatives to using a

time-varying filter are (1) to use an exponentially-correlated model of

the disturbances or (2) to use integral control. A random walk model of
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the disturbances can also be used, but the steady covariance of the

controlled state may be unbounded even though the filter is well

defined.

Exponentially-Correlated Model of the Disturbances

A useful model of the disturbances is the exponentially-correlated

model with a time constant, T, long compared to characteristic times of

the system being controlled:

w =--w +l o ,
(5.3.4)

E[o] = 0 , ECtlo ( t) TT ( ) ] = Qo 6(t-r)

where Qo = Xww = Ew(t)wT (t)] = given constant.2 o ww

This is essentially a slowly-changing bias model, which is more realistic

than the "constant forever" bias model of (5.3.1). Here we must make a

choice of T , whereas in a random walk model we must make a choice of

Qo ; the choice of Qo is usually more nebulous than the choice of 7 .

The steady filter that results from this model is again given by

(5.3.2) and (5.3.3) except that the last two equations in (5.3.3) are

replaced by

12 7 12 o 22 11 12 (5.3.5)

2 T T-10 =1- (P _X ) + P HR HP7 ( 2 2 - ww P12 H R H 1 2

and the second equation of (5.3.2) is replaced by

A 1 A
w = w + K2(z-H;) . (5.3.6)

With this filter, the system is predicted to reach a statistical

steady state, and the usual techniques of predicting covariances may be

used. Precisely speaking, the mean value offset of Section 5.1 will not

be entirely removed since this filter will not estimate a truly constant

disturbance exactly. However, for large 7 the mean value offset will

be negligibly small.
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Use of the exponentially-correlated model to design a constant

gain filter for estimating the lateral aircraft motions yields the

filter gains shown in Appendix F where we assumed VTr = 12500 ft and

2
, = (25 ft/sec) . The closed loop poles of the estimate error

ww -1
equations are those of Fig. 8 plus an additional pole at -0.3 hft

The steady INS response using this filter is shown in Table 5.1. In

addition, the RMS response for w=0 and the steady response for a

25 ft/sec steady crosswind are shown for comparison purposes with the

preceding and succeeding sections.

Table 5.1

cp' P ' y 6a 6r

deg/hft deg deg/hft deg deg ft deg deg

IMS 1.595 4.51 0.635 1.297 0.713 8.15 10.12 13.04

RMS (w=0) 1.523 3.38 0.509 0.973 0.647 7.42 6.87 4.87

Offset 0.0 -2.71 0.0 -0.147 0.0 0.728 -7.45 12.18

The offsets for 4 and y are due to the small error in estimating the

constant disturbance and are insignificant when compared to the fluctuat-

ing component in any given sample.
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5.4 - Design Using Modified Integral Control

Consider now the use of integral control with state estimation.

Suppose a steady filter for the system has been designed assuming no

constant disturbances:

x = Fx + Gu + K (z-H ) (5.4.1)

we then introduce integral control in the following form (cf. Section

3.4):

u = -C x + C y - C (v+L~) , (5.4.2)
x yd v

where

S= T - yd + K2 (z-H~) , (5.4.3)

and Cx, C , C v, L are chosen as in Section 3.4, while K 2 is a

constant matrix yet to be chosen. It is straightforward to show that,

for any K2 , the eigenvalues of the closed-loop system are the eigen-

values of F-GC plus the eigenvalues of F-K 1H plus the eigenvalues
x 1

of -LGC , so that C can be chosen separately rather than simulta-
v v

neously with C and K1 .
x 1

K2 can be chosen to produce zero mean value offsets in the outputs.

For w=constant it follows from (5.4.1) and (5.4.3) that

E(R) - (F-K1H) 1 o w  1 (5.4.4)

E(Tx-yd) (K2H-T)E()(5.4.4)

where =x^-x=error in the estimate of x . Thus

E(Tx-yd) - (K2 H-T)(F-K1H) oW • (5.4.5)

If K2 can be chosen such that

(T-K2H)(F-K1H)rT = 0 , (5.4.6)

then the mean value offsets of the output will be zero.

For the important particular case where the outputs are measured,

i.e.

z = Tx + V , (5.4.7)
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so that T = H , it is obvious that (5.4.6) is satisfied if

K2 = I = identity matrix . (5.4.8)

The integrals of (5.4.3) become then simply

v = z - Yd . (5.4.9)

In general, the K 2 matrix can be chosen to insure zero mean

offset if the rank of the matrix [T(F-K1H)- ] is equal to the rank

of the augmented matrix [T(F-K H) 0 :H(F-K H)-lr' . Usually, this

means that either the space spanned by T is included in that spanned

by H or the dimension of the measurement is greater than or equal to

the dimension of the steady disturbance. In the former case, it is

possible to find K2 so that K2H=T , and the outputs (y) are measured

directly with only white noise measurement error (V). In the more

general second case, at least as many independent measurements as inde-

pendant constant disturbances are required. In this second case, the

stationary performance is sensitive to modeling errors in F and r ,

whereas, in the first case when K2H=T , the only sensitivity is to the

measurement distribution H

Expressions for the steady covariance matrix of x are given in

Appendix G.

The above results are applied to the lateral aircraft control

problem, using the undisturbed steady filter of Appendix E, the integral

control law of Section 3.4, and the direct integration of the lateral

position and yaw attitude measurements. The steady RMS response to the

noisy gusts and measurements and the steady offsets for the constant

25 ft/sec crosswind are shown in Table 5.2.
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Table 5. 2

4P' P' T y 6a 6r

deg/hft deg deg/hft deg deg ft deg deg

RMS 1.83 4.15 0.602 1.02 0.765 6.80 9.91 5.21

Offset 0 -2.71 0 0 0 0 -7.64 +12.5

Notice that the lateral position RMS response is slightly smaller than

using the state-disturbance estimator at the cost of increased RMS

aileron control.
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Chapter 6

Conclusions

Several techniques for constant disturbance compensation have been

presented. The concept of integral control was generalized to the

multi-input, multi-output output case. A procedure for synthesizing the

integral control gains separately from the standard regulator-filter

was presented. Using this technique, a regulator-filter whose transient

response is satisfactory can be augmented with integral control for

improved steady behavior. The state estimate filter is left unchanged

and the state feedback gains are modified in a straightforward manner.

The results were applied to the lateral aircraft control problem for

automatic landing in the presence of a steady crosswind. It was found

that state plus integral feedback provided an excellent technique for

reducing the steady offset, without sacrificing good transient behavior.

The use of a filter to estimate the state from noisy measurements coupled

with the state plus integral feedback control laws resulted in acceptable

RMS response and zero steady offset.

The integral control technique of constant disturbance compensation

was compared to compensation using disturbance estimators. It was found

that integral control amounts to a special form of estimation. However,

the RMS response may be larger for the integral control formulation

because no use is made of the assumed knowledge of the disturbance dis-

tribution as in the conventional estimator. This disadvantage of

integral control must be weighed against the advantage that the steady

offset remains zero even in the presence of modeling errors. The

integral control technique does, however, exhibit sensitivity to bias

or other long correlation disturbances in the measurements. Often, these

measurement bias errors are not observable (as in the case of the lateral

position measurement), and the conventional estimator does no better.

In conclusion, then, integral control is likely to be most successful

in situations where there are system model uncertainties and the measure-

ments are unbiased.
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Appendix A

State Dynamics Matrix for Lateral Motions of a DC-8 Aircraft

in Landing Approach with Open Loop Eigensystem

ORDER OF SYSTEM - 6

OPEN LOOP DYNAMICS MATRIX....

-3.9040-01 0.0 2.502D-01 2.2400-01 -2.2400-01 0.0 p'
1.000D 00 0.0 0.0 0.0 0.0 0.0 9

-5.093D-02 0.0 -1.087D-01 -1.2760-01 1.2760-01 0.0 '
0.0 0.0 1.000D 00 0.0 0.0 0.0
0.0 5.4260-02 0.0 4.5720-02 -4.5720-02 0.0 (
0.0 0.0 0.0 0.0 1.7450 00 0.0 y

OPEN LOOP EIGENVALUES AND EIGENVECTORS......... (hft-1 )

COMPLEX EIGENVALUE( 1)........ COMPLEX EInENVECTOR( 1)........

( -0.04483468)+J( 0.40648859) ( -0.04483468)+J( 0.40648859)
( 1.00000000)+J( 0.0 )
( -0.26250553)+J( -0.20808545)
( -0.43538417)+J( 0.69380997)
( 0.07822031)+J( -0.08434428)
(-0.39431806)+J( -0.29229680)

REAL EIGENVALUE (1) ........ REAL EIGENVECTOR( 1)........

( 0.0 )+J( 0.0 ) ( 0.0
( 0.0 )
( 0.0
( 0.0 )
( 0.0 )
( 1.00000000)

REAL EIGENVALUE ( 2) ....... REAL EIGENVECTOR( 2)........

( -0.46048882)+J( 0.0 ) (-0.37782160)
( 0.82047942)
( -0.00841106)
( 0.01826551)
( -0.10934841)
( 0.41437050)

REAL EIGENVALUE ( 3)........ REAL EIGENVECTOR( 3)........

( 0.00533819)+J( 0.0 ) ( 0.00000167)
( 0.00031376)
( 0.00001625)
( 0.00304391)
( 0.00305910)
( 0.99999064)

REAL EIGENVALUE ( 4)........ REAL EIGENVECTOR( 4)........

( -0.00000000)+J( 0.0 ) ( 0.00000000)
( 0.00000000)
( 0.00000000)
( -0.00000000)
( -0.00000000)
( 1.00000000)
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Appendix B

Control Distribution Matrix and State Feedback Gains

for Lateral Motions of a DC-8 Airplane in Landing Approach,

with Closed-Loop Eigensystem

ORDER OF SYSTEM = 6

NUMBER OF CONTROLS - 2

OPEN LOOP DYNAMICS MATRIX....

-3.904D-01 0.0 2.502D-01 2.240D-01 -2.240D-01 0.0 9'
1.0000 00 0.0 0.0 1 0.0 0.0 0.0 9-5.093D-02 0.0 -1.0870D-01 -1.2760-01 1.2760-01 0.0 *'
0.0 0.0 1.0000 00 0.0 0.0 0.0 
0.0 5.4260-02 0.0 4.572D-02 -4.572D-02 0.0 t
0.0 0.0 0.0 0.0 1.745D 00 0.0 y

STATE COST MATRIX....

0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 2.5000-01 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 4.444D-03

THE CONTROL DISTRIBUTION MATRIX....

as 6r

1.2240-01 -3.057D-02
0.0 0.0
8.971D-03 6.557D-02
0.0 0.0
0.0 -9.772D-03
0.0 0.0

THE CONTROL WEIGHTING MATRIX.......

1.0000-02 0.0
0.0 1.0000-02
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Appendix B (Cont.)

EIGENSYSTEM OF OPTIMAL CLOSED LOOP SYSTEM..(htt
-1)

COMPLEX EIGENVALUE( 1)........ COMPLEX EInENVECTOR( 1)........

( -0.32300031)*J( 0.50246618) (. 0.53588176)0J( -0.19436612)
( -0.75883202)+J( -0.57870318)
( -0.32300031)*J( 0.50246618)
( 1.00000000)+J( 0.0 )
( 0.007725R8)+J( -0.02156565)
( -0.06519990)+J( 0.01508147)

COMPLEX EIGENVALUE( 2)........ COMPLEX EIlENVECTOR( 2)........

( -0.11996941)+J( 0.24002028) ( 0.20186374)+J( -0.04816881)
( -0.49691354)+J( -0.59265542)
( -0.01739570)+J( 0.00442558)
( 0.04373718)+J( 0.050614R1)
( -0.06875038)+J( .0.13754744)
( 1.00000000)+J( 0.0 )

REAL EIGENVALUE ( 1)........ REAL EIGENVECTOR( 1)........

( -0.45287098)+J( 0.0 ) -0.37032118)
( 0.81771894)
( -0.00349654)
( 0.00772084)
( -0.11067944)
( 0.42646943)

REAL EIGENVALUE (2) ........ REAL EIGENVECTOR( 2)........

( -0.25151727)+J( 0.0 ) ( 0.12740354)
( -0.50653995)
( -0.00854898)
( 0.03398965)
( 0.12155221)
( -0.84331625)

THE CONTROL GAINS ARE:

-6a 3.57180771 2.47071429 4.63055479 1.60213745 8.54435546 0.q5915493

- 6 r 0.23302354 0.49602571 9.18713550 3.62741330 2.91641691 0.09957298
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Appendix C

Steady-State Solutions when the Number of Outputs is Less than

the Number of Control Inputs

The problem is to find x and u to minimize
s s

1 T T
J (xAx + u Bu ) , (C.1)

2 s s s s

subject to the steady-state constraints

0 = Fx + Gu +rw , (C.2)
s s

Yd = Txs (C.3)

Adjoining (C.2) and (C.3) to (C.1) by Lagrange multipliers XT and

g respectively, it follows directly that the unique minimizing values

of x and u can be obtained by solving the linear equations
s s

F , -GB-1 GT  0 x -r

-A, -F , T = 0 (C.4)

T , O , O Yd

where

u = -B-1GTX . (C.5)

As an example, consider a steady banked turn at constant altitude

for the DC-8 of Appendices A and B. Only the state variables ',4,*' ,

and B = - are of interest in this case and it is clear that

V

where V is forward velocity and W is the turn rate. The relevant

constraint equations (with w=0O ) are therefore:
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F x G u
s s

0 ,.2502 , -.224  s .1224 , -.03057 6a

o 0 ,-.1087 , .1276 + .008971 , .06557 6r , (C.6)I

.05426 ,-1.000 ,-04572 s L 0 ,-.009772

= [0, 1, ] , where V is in units of hft/sec. (C.7)
s

For this case we take the weighting matrices of (C.1) as

A = 0 , B = I . (C.8)

Note there is only one output, , while there are two control inputs

( 6 a and 6r ). With these data, the choices of Qsss,6as,6rs

that minimize (C.1) while satisfying (C.6) and (C.7), obtained by

solving (C.4) and (C.5), are:

s 9.21 6a -0.3127

1 1.000 , . (c.9)sL f V.7  V -6r -0.1914 V
Ss

It is interesting to compare (C.9) with a "truly banked turn"

where the aerodynamic side force is specified to be zero, i.e.

-. 045720 -.009772 6 r = 0 (there are now two outputs and two inputs).

For this case it is easy to show from (3.2.7) that

S18.43 6a -2.529

= .000 , . (C.10)s V 6 V6r
Ps -0.7335 3.431
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For the zero sideslip turn

r6a -1.576]
1.000 , O

r L r1.873 V
P 0.000 rs.

Notice that both the "truly banked" and zero sideslip turns require

substantially larger control deflections than the control minimized

turn. The steady side specific force, a, experienced by a passenger

is given as

a = g(18.43 W/V - ~s)

-1
where ps is in radians, W in rad/sec, and V in hft sec-. This

is equivalent to tilts from vertical of only 4.2% and 1.8% of the

"truly banked" steady bank angle for the control minimized and zero

sideslip turns, respectively.
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Appendix D

Quadratic Synthesis of Integral Control Gains

An alternative method for determining state plus integral feedback

control gains is to use quadratic synthesis (P-l, K-2, B-5). We tempo-

rarily neglect the constant process disturbances and non-zero setpoints

and augment the system with the additional states (v) given by ir=Tx.

Adding weighting on v in the performance index, yields an optimal

regulator problem:

Min J = 1/2 S (x TAx + v A2v + uTBu)dt (D.1)
u t

o

Subject to = Fx + Gu x(t ) = x
o o (D.2)

= Tx v(t ) = v
o o

where v is arbitrary. When the controllability conditions are

satisfied, the solution is

u = -B-1G S11x - B-1G T12v (D.3)

T -1 T TT
where SF F + F S S GB GS + A + S T + T S = 0

11 11 11 11 1 12 12

(F-GB -1G S 11) S12 + T S22 = 0 , (D.4)

T -iT
and A - S 1GB G S = 0

2 12 12

To properly choose the initial conditions (v ) , the performance index
o

(D.1) will be minimized with respect to v (M-1). The performance

index is given in terms of the initial conditions as

J = 1/2 , v S12 x (D.5)

S T  S v

12 22 0

Thus, the minimizing v is given by
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S= -S 1 T (D.6)
o  -22 12 o

When this control law is implemented with a non-zero setpoint the only

modification required for a zero-offset steady state is to let

V = Tx - Yd (D.7)

However, the response to a setpoint change will be faster if feed-forward

of the setpoint is also included. The resulting control law is thus,

u = -C x + C yd - Cv (D.8)
x y v
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Appendix E

Filter Gains for the Estimation of Lateral Motions from Noisy

Attitude and Position Measurements with Gusty Wind Disturbances

and the Eigensystem of the Estimation Error

ORDER OF SYSTEM - 6

NUMBER OF CONTROLS - 2

NU11BER OF OBSERVATIONS - 3

NUMBER OF PROCESS NOISE SOURCES - 2

OPEN LOOP DYNAMICS IMATRIX....

-3.904D-01 0.0 2.5020-01 2.2400-01 -2.2400-01 0.0
1.000 o00 . 0.0 0.0 0.0 0.0 0.0 I

-5.093D-02 0.0 -1.087D-01 -1.276D-01 1.2760-01 0.0 #*
0.f 0.0 1.0000 00 0.0 0.00 .
0.0 5.4260-02 0.0 4.5720-02 -4.572D-02 0.0 
0.0 0.0 0.0 0.0 1.7450D O 0.0 y

THE CONTROL DISTRIBUTION MtATRIX....

8a 6r

1.2240-01 -3.057D-02
0.0 0.0
8.9710-03 6.5570-02
0.0 0.0
0.0 -9.7720-03
0.0 .0.0

STATE DISTURBANCE DISTRIBUTION MATRIX....

2.2400-01 -3.9040-01
0.0 0.o

-1.2760-01 -5.093D-02
0.0 0.0
4.5720-02 0.0
0.0 0.0

POWER SPECTRAL DENSITY - STATE NOISE....

5.5370 00 0.0
0.0 5.5370 00

MEASUREMENT SCALIN, MATRIX.....

0.0 1.000D 00 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0000 00 0.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0000 00

POWER SPECTRAL DENSITY - MEASUREMENT NOISE..

2.5000-01 0.0 0.0
0.0 2.5000-01 0.0
0.0 0.0 1.0000 02
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Appendix E (Cont.)

EIGENSYSTEM OF ESTIMATE ERROR EQUATION.....(hft-
1 )

COMPLEX EIGENVALUE( 1)........ COMPLEX EIGENVECTOR( 1)........

( -1.03865067)+J( 1.01531494) ( 1.00000000)+J( 0.0
( 0.44759741)+J( -0.69319355)
( -0.00932262)+J( 0.06015641)
( 0.08193031)+J( 0.0109q606)
( 0.03536834)+J( -0.01701054)
( -0.03751940)+J( -0.03386997)

COMPLEX EIGENVALUE( 2)........ COMPLEX EIOENVECTOR( 2)........

( -0.52597023)+J( 0.61790966) ( 0.28232492)+J( 0.17562874)
( 0.23021303)+J( 0.02854616)
( 0.37325066)+J( 0.61866735)
( 1.00000000)+J( 0.0 )
( -0.13180058)+J( -0.16416696)
( -0.33152040)+J( 0.19161289)

COMPLEX EIGENVALUE( 3)........ COMPLEX EIGENVECTOR( 3)........

( -0.04887570)+J( 0.04832768) ( -0.00305548)+J( -0.00348359)
( -0.00208325)+4( -0.00215971)
( 0.00431253)+J( 0.00491622)
( 0.00628471)+J( 0.00555069)
( 0.02577604)+J( 0.02682738)
( 1.00000000)+J( 0.0 )

THE COVARIANCE OF THE ESTIMATION ERROR

0.76068438 0.35913348 -0.01907670 0.04071315 0.03108149
0.35913348 0.42368247 -0.02072033 0.00773122 0.03185824
-0.01907670 -0.02072033 0.13382472 0.09957324 -0.04144187
0.04071315 0.00773122 0.09957324 0.22297129 -0.03374479
0.03108149 0.03185824 -0.04144187 -0.03374479 0.02865678
-0.04427190 0.00745114 -0.00535122 -0.06528608 0.26659257

-0.04427190
0.00745114
-0.00535122
-0.06528608
0.26659257
9.55581974

FILTER STEADY STATE GAINS......

1.43653394 0.16285259 -0.00044272
1.69472986 0.03092487 0.00007451

-0.08288130 0.39829297 -0.00005351
0.03092487 0.89188514 -0.00065286
0.12743295 -0.13497917 0.00266593
0.02980456 -0.26114433 0.09555820

STATE RMS RESPONSE CONTROL RMS RESPONSE

'' 1.46850863 6a 6.30470433
p 3.30690313 6r 3.17164437
' 0.49982089
* 0.97850027
t 0.65134758
y 7.43165997
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Appendix F

Filter Gains for the Estimation of the Lateral Motions

Including an Exponentially Correlated Wind Disturbance

and the Eigensystem of the Estimation Error

ORDER OF SYSTEM - 7

NUMBER OF CONTROLS - 2

NUtMBER OF OBSERVATIONS , 3

NUMBER OF PROCESS NOISE SOURCES , 3

OPEN LOOP DYNAMICS M4ATRIX....

-3.90D0-01 0.0 2.5020-01 2.2400-01 -2.240D-01 0.0 2.2400-01 9'
1.0000 00 0.0 0.0 0.0 0.0 0.0 0.0

-5.093D-02 0.0 -1.087D-01 -1.2760-01 1.276D-01 0.0 -1.2760-01 t'
0.0 0.0 1.0000 00 0.0 0.0 0.0 0.0 9
0.0 5.426D-02 0.0 4.5720-02 -4.5720-02 0.0 4.572D-02 c0.0 0.0 0.0 0.0 1.7450 00 0.0 0.0 y0.0 0.0 0.0 0.0 0.0 0.0 -8.0000D-03

THE CONTROL DISTRIBUTION MATRIX....
6a Or

1.2240-01 -3.0570-02
0.0 0.0
8.9710-03 6.557D-02
0.0 0.0
0.0 -9.7720-03
0.0 0.0
0.0 0.0

STATE DISTURBANCE DISTRIBUTION MATRIX....

2.2400-01 -3.904D-01 0.0
0.0 0.0 0.0

-1.2760-01 -5.0930-02 0.0
0.0 0.0 0.0.
4.5720-02 0.0 0.0
0~0 0.0 0.0
0.0 0.0 1.0000 00

POWER SPECTRAL DENSITY - STATE NOISE....

5.5370 00 0.0 0.0
0.0 S.5370 00 0.0
0.0 0.0 5.5360-01
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Appendix F (Cont.)

MEASUREMENT SCALING MATRIX.....

0.0 1.0000 00 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.000D 00 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0000 00 0.0

POWER SPECTRAL DENSITY - MEASUREMENT NOISE..

2.5000-01 0.0 0.0
0.0 2.S00D-01 0.0
0.0 0.0 1.0000 02

EIGENSYSTEM OF ESTIMATE ERROR EOUATION..... (hft
1)

COMPLEX EIGENVALIIE( 1)......... COMPLEX EIGENVECTOR( 1)........

( -1.03499481)*J( 1.01794641) ( 1.0000000)*J( 0.66328835)
( 0.46290254)*J(-0.86328835)
( .-0.06238768)*J( 0.01456159)
( 0.03737167)*J( 0.03425782)
( O.05420321)+J( -0.02589666)
( O.01927429)*J( -0.06113575)
( 0.34924082)+J( -0.10904082)

COMPLEX EIGENVALUE( 2)........ COMPLEX EIGENVECTOR( 2)........

( -0.52025652)+( 0.63865307) ( -0.03538373)+J( 0.12658824)
( 0.01560911)*J( 0.12575094)
( -0.59215569)4j( 0.07544230)
( -0.39157950)*J( 0.56039075)
( 0.18589657)J( -0.04030693)
( 0.17708061)*J( -0.273076553)
( 1.00000000)*J( 0.0 )

COMPLEX EIGENVALUE( 3)........ COMPLEX EIGENVECTOR( 3)........

( *0.4OIS7749)*J( 0.04867963) C 00000317S)*J( -0.0008351)
( -o0.0015O89s)*J -0.00004096)
( 0.00001112)*J( 0.00017144)
( 0.00133603)*J( 0.00009723)
( 0.02779542)*J( 0.02796137)
( 1.00000000)*J( 0.0 )
( 0.02574761)*J( 0.02717536)

REAL EIGENVALUE ( 1)........ REAL EIGENVECTOR( 1)........

( -0.30023284)*J( 0.0 ) (-0.11905073)
( -0.07429456)
( 0.15231280)
( 0.18072602)
( -0.05495609)
C -0.09008243)
( -0.95567314)
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Appendix F (Cont.)

THE COVARIANCE OF THE ESTIMATION ERROR

0.79933060 0.37985823 -0.06643974 0.00063180 n.04932665
0.37985823 0.43549315 -0.04773003 -0.01646479 0.04233659

-0.06643974 -0.04773003 0.19623749 0.15611134 -0.06562507
0.00063180 -0.01646479 P.15611134 0.27880852 -0.05615926
0.04932665 0.04233659 -0.n6562507 -0.05615926 0.03821684
0.00665403 0.03868896 -0.07677372 -0.14197009 0.29923830
0.30049013 0.15956794 -0.37077524 -0.32021174 0.14371967

0.00665403 0.30049013
0.03868896 0.15956794

-0.07677372 -0.37077524
-0.14197009 -0.32021174
0.29923830 0.14371967
9.78637978 0.41803514
0.41803514 2.49140724

FILTER STEADY STATE GAINS......

1.51943293 0.00252720 0.00006654
1.74197261 -0.06585916 0.00038689

-0.19092014 0.62444535 -0.00076774
-0.06585916 1.11523408 -0.00141970
0.16934636 -0.22463705 0.00299238
0.15475583 -0.56788036 0.09786380
0.63827175 -1.28084698 0.00418035
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Appendix G

The Steady Covariance Using Modified Integral Control

Using the equations given in Section 5.4, the estimates and

estimate errors are found to satisfy the equations

x (F-GC) , -GC , -K1H x GC yd

= T , , -K2H v + -yd

OO ,0 (F-K1H) -r w

K 1  0

+ K2  V + 0 7

K1 -r1 (G.1)

Since yd and w are considered to be deterministic, they affect only

the mean value. The steady covariance then satisfies

o= (F-GC )Xn^ + X^"^ (F-GC ) - CS~ - GT

0 = (F-GC )X-v - GC(vv + X+R T  + K RKT

T T T (G.2)

xv xv 2 2

0= (F-K 1 H)X +X (F-K H) + KRK RK + r T
1 xx 1 1 1 1 1

and X = O and = P
xvx xx

where 0 = FP + PF - PH R HP +r OrT

T -1
and K 1 = PH R

Thus, it is seen that the integral control law does not affect the

steady performance of the filter, i.e.the estimate error is still P

and the covariance between the estimates and the estimate errors

remains zero. Only the steady covariance of the state estimates is

changed by using the integral control law.

Xx = X^ + P
xx xx

T T T T T
Xuu = CXC + 0CvvCv + C xC + C(C
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